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1. Abstract
In this paper, we applied Likelihood and Bayesian methods of statistical analysis to analyze our parameter
of interest, the vaccine efficacy rate of the BNT162b2 vaccine for the COVID-19 virus, denoted ψ0 for this
paper. The experimental data is from Pfizer and BioNTech, the producers of the vaccine. Vaccine efficacy is
the percentage decrease in the chance of being infected given the vaccine compared to the placebo group
and the FDA requires a vaccine efficacy rate of at least 30% for vaccines to be approved for general use. We
used the maximum likelihood estimate, likelihood ratio p-value, Wald confidence interval, and a bootstrap
interval for the likelihood analysis. We approached the data using a Bayesian framework as well, computing
a Bayesian credible interval and hypothesis testing. Using both methods, we found significant evidence to
support that the vaccine efficacy exceeds the 30% threshold, meaning that the BNT162b2 vaccine would be
approved by the FDA for general use.

2. Keywords
BNT162b2 Vaccine, COVID-19 Vaccine, Vaccine Efficacy, Maximum Likelihood Estimation, Bayesian
Estimation

3. Introduction
COVID-19 is a contagious disease caused by the coronavirus SARS-CoV-2. Several COVID-19 vaccines have
been approved and distributed in various countries, many of which have initiated mass vaccination campaigns.
In December 2020, Pfizer and BioNTech successfully obtained a US FDA Emergency Use Authorization
(EUA) to begin distributing their two-dose vaccine, BNT162b2. BNT162b2 utilizes mRNA technology to
stimulate an immune response. About 649 million doses of the Pfizer–BioNTech COVID-19 vaccine, including
about 55 million doses in children and adolescents (below 18 years of age) were administered in the EU/EEA
from authorization to 26 June 2022. As of 2025, there is a political uncertainty regarding the effectiveness of
the vaccine. The FDA requires at least 30% vaccine efficacy for a vaccine to be approved. Vaccine efficacy is
the percentage reduction of the risk of getting COVID-19 given the vaccine compared to the placebo group.
The experiment is a placebo-controlled, double-blind randomized trial, enrolling participants aged 16 and
older. Participants were randomly assigned in a 1:1 ratio to receive either two doses of BNT162b2 or a
placebo, administered 21 days apart. The primary efficacy endpoint was laboratory-confirmed COVID-19
infection, with a total of 170 cases observed across the study groups.

Given the significance of this vaccine in controlling the pandemic, our report aims to analyze the clinical trial
data using both Bayesian and Frequentist statistical methods. Statistical models assessing vaccine efficacy
play a crucial role in guiding public health decisions. The evaluation of Pfizer’s clinical trial data through
alternative statistical frameworks help reinforce confidence in the robustness of vaccine efficacy estimates
and their implications for global vaccination strategies. The goal of our report is to critically assess the
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Figure 1: Barplot of Infection Percentages for Vaccinated (BNT162b2) and Placebo Groups
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Group Cases Sample Size
BNT162b2 8 17,411

Placebo 162 17,511
Total 170 34,922

Table 1: Vaccine Efficacy against COVID-19 at least 7 days after second dose in patients without evidence of
infection, from Pfizer and BioNTech

statistical modeling in clinical trials and to understand how different methods may influence public health
decision-making.

4. Statisical Methods
In this study, we applied two main statistical methods, Likelihood and Bayesian inference, to analyse our
parameter of interest. Our parameter of interest is the vaccine efficacy rate of the BNT162b2 vaccine for
the COVID-19 virus, denoted ψ0 for this paper. Vaccine efficacy is the percentage decrease in the chance of
being infected by COVID-19 given the vaccine compared to the placebo group. The FDA requires an efficacy
rate of at least 30% before vaccines can be authorized for use, thus the goal of this analysis is to determine if
the efficacy rate of the BNT162b2 vaccine sufficiently meets this requirement. Our data is from Pfizer and
BioNTech, the producers of the BNT162b2 vaccine.

4.1 Likelihood Inference
Let n be the total number of patients with COVID-19 (from the data, n is equal to 170)1. Let T be a binomial
random variable expressing the number of patients that have COVID-19 that are from the vaccine group.

T ∼ Binom(n = 170, π)

Where π denotes the probability of an infected patient being from the vaccine group. Then:

π = P (Vaccine|COVID-19 Infection) = πv · nv
πv · nv − πp · np

Where πv and πp are the probability of a patient being from the vaccine or placebo group, respectively.
Additionally, nv and np are the number of infected patients from the vaccine and placebo group, respectively.
Since nv ≈ np, the randomization is 1:1, meaning we can express the function as:

π = πv
πv − πp

Our parameter of interest, the vaccine efficacy, is given by ψ0 = 1 − πv

πp
= πp−πv

πp
. Note that the range of

ψ0 = (−∞, 1). Our efficacy formula is also given in terms of π:

ψ0 = 1 − 2π
1 − π

Note that π can then be written in terms of ψ0.2

π = ψ0 − 1
ψ0 − 2

The likelihood function of ψ0 can be expressed using the pdf of T , given that π = ψ0−1
ψ0−2 .

1See Table 1 from the Introduction section.
2See appendix 8.1 for calculations.
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f(T = t) = L(ψ0) =
(
n

t

)(
ψ0 − 1
ψ0 − 2

)t(
1 − ψ0 − 1

ψ0 − 2

)n−t

Where t is the observed number of patients in the vaccine group and n is the number of COVID-19 cases.
Then the log-likelihood function:

ℓ(ψ0) = ln

((
n

t

))
+ t ln (ψ0 − 1) − t ln(ψ0 − 2) − (n− t) ln (2 − ψ0)

In order to identify the possible maximums of our log-likelihood function, we took the first derivative of our
log-likelihood with respect to the parameter of interest, ψ0, and found the root(s) of the equation.

d

dψ0
ℓ(ψ0) = t

ψ0 − 1 − t

ψ0 − 2 + n− t

2 − ψ0

= t

ψ0 − 1 + t

2 − ψ0
+ n− t

2 − ψ0

= t

ψ0 − 1 + t

2 − ψ0
+ n− t

2 − ψ0

= t

ψ0 − 1 + n

2 − ψ0

t

ψ0 − 1 + n

2 − ψ0
= 0

−t
ψ0 − 1 = n

2 − ψ0

nψ0 − n = −2t+ tψ0

nψ0 − tψ0 = −2t+ n

ψ0 = n− 2t
n− t

This value is a possible maximum of our log-likelihood function. The second derivative test allows us to test
the concavity of the function using our given data where n = 170 and t = Tobs = 8:

d2

dψ2
0
ℓ(ψ0) = −t

(ψ0 − 1)2 + n

(2 − ψ0)2

d2

dψ2
0
ℓ

(
ψ0 = n− 2t

n− t

)
= d2

dψ2
0
ℓ

(
170 − 2(8)

170 − 8

)
= −8(( 154

162
)

− 1
)2 + 170(

2 −
( 154

162
))2 = −3126.124

Thus our critical point is a local maximum. Thus:

ψ̂0
mle

0 = n− 2T
n− T

The Large Sample Confidence Interval
Based on Theorem 12.1 3, the 95% large confidence interval of ψ̂0

mle
, under certain regularity conditions, is

equal to:

ψ̂0
mle

± z0.975

√
1

n I(ψ̂0
mle

)
3Slide deck "likelihood-inference" from Stat 342, Grove, Ranjini
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Where I(ψ̂0
mle

) is the expected Fisher Information, equal to:

I(ψ̂0
mle

) = E

[
−d2

dψ2
0
ln(fψ0(t))

]
ψ0=ψ̂0

mle
= nπ

ψ0 − 1 − n

2 − ψ0
= t

ψ0 − 1 − n

2 − ψ0

Where π is the rate of vaccine patients given that ψ0 = ψ̂0
mle

0 . Our large sample confidence interval is then:

ψ̂0
mle

± z0.975

√
1

t

ψ̂0
mle−1

− n

2−ψ̂0
mle

The key regularity and size assumptions we must consider are4:

1) The possible values of t are not dependent on the parameter ψ0, which is true since the possible values
of t relies on the size of the binomial.

2) The true value of the parameter does not fall on the boundaries. This is also true since the range of
ψ0 = (−∞, 1), meaning it does not have set boundaries.

3) The sample size is significantly large. Our sample size is 170.

Bootstrap Confidence Interval
The MLE of π based on the dataset is 8

170 , we then use this π to generate 1000 samples and find ψ0 for each
sample. The value of first and last 2.5% of ψ0 is Bootstrap percentile 95% confidence interval.

P-Value Based on the Likelihood Ratio Test Statistic
The p-value calculation is based off our null and alternative hypotheses where our null hypothesis assumes
that the efficacy is the FDA’s required 30% while the alternative suggests that the true rate is not equal to
30%, but rather higher. Thus higher values of ψ0 support the alternative hypothesis.

H0 : ψ0 = 0.3, H1 : ψ0 ̸= 0.3

Our test statistic is the Likelihood Ratio Test Statistic, denoted:

W = 2ln
(

L(ψ̂0)
L(ψ0

null = 0.3)

)
∼ χ2

1

Empirical P-Value
The empirical p-value was calculated based on a large number of randomly generated samples generated with
the parameters outlined by the null hypothesis (ψ0 = 0.3). The empirical p-value is equal to the percentage
of the generated samples that have a Likelihood Ratio p-value as significant or more significant than the
p-value from our original data.

4.2 Bayesian Inference
Another point of reference can be done using Bayesian inference. We analyze our data under the beta-binomial
framework. Compared to the Frequentist approach, we can treat πv and πp as fixed unknowns, and utilize
Bayesian inference to model them as random variables.

Vaccine efficacy, previously defined as:

ψ0 = πp − πv
πp

Where πv is the probability of infection in the vaccine group and πp is the proabability of infection in the
placebo group. Using the reparametrization representing the infections occurring in the vaccine group relative
to both groups:

π = πv
πv + πp

4Slide deck "likelihood-inference" from Stat 342, Grove, Ranjini
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Recall that we model the total number of infections across both groups as:

T ∼ Binom(n = 170, π)

Where T = 8 (number of infections in the vaccine group) and n = 170 (total infections in both groups)

The prior for π is defined as (α0 and β0 established from previous studies):

π ∼ Beta(0.700102, 1)

Computing the Posterior for π:

We know the beta is a conjugate prior in the binomial model. Therefore, we know the posterior distribution
of π is also a beta distribution.

π | t ∼ Beta(α0 + T, β0 + (n− T ))
π | t ∼ Beta(8.700102, 163) (Posterior)

0
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Figure 2: Prior and posterior distributions of pi

Point estimate for π (Median):

We compute the posterior median of π as a point estimate, which is calculated numerically 5:
5using qbeta()
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πmedian = 0.04893234

Interval for π:

A Bayesian interval estimate of π is analogous to a Frequentist confidence interval. We can compute this
posterior interval based on:

P (a ≤ π ≤ b | t) = 1 − α

And calculate a and b for:

P (a ≤ π ≤ b | t) = 0.95

Where [a,b] represents the Bayesian interval for π.

Translating π back to ψ0:

Since the main parameter of interest of this study is the vaccine efficacy rate, or ψ0, we can translate the
summaries (median, Bayesian interval) of π back to ψ0 using:

Using πmedian = 0.04893234, we can say that

P (π < 0.04893234|t) = 0.5

Since,

ψ0 = 1 − 2π
1 − π

π = 1 − ψ0

2 − ψ0

We can express π as:

P (1 − ψ0

2 − ψ0
< 0.04893234|t) = 0.5

And then isolate ψ0 to determine the posterior median of ψ0.

Similarly for the Bayesian interval for ψ0, we can express π in terms of ψ0:

P (a ≤ π ≤ b | t) = 0.95

P

(
1 − 2b
1 − b

≤ ψ0 ≤ 1 − 2a
1 − a

| t
)

= 0.95
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Bayesian P-Value

Per FDA guidelines, ψ0 must be at least 30% for vaccine approval. Using hypothesis testing as shown,

H0 : ψ0 = 30

H1 : ψ0 ̸= 30

We calculate the posterior probability P (ψ0 ≤ 0.3|t) by modeling ψ0, and using the posterior distribution of
π.

P (ψ0 ≤ 0.3|t)

P (1 − 2π
1 − π

≤ 0.3|t)

P (π ≥ 7
17)

Then, the p-value can be determined as the probability of observing a value less than or 7
17 for π.

5. Results
5.1 Results from Likelihood Methods
The maximum-likelihood estimate of the parameter ψ0 given the data is approximately 0.9506, based on the
equations in section 4.1.

ψ̂0
mle

= 154
162 ≈ 0.9506

And the 95% large sample confidence interval (the Wald Confidence Interval) is:

0.9506 ± z0.975

√
1

8
0.9506−1 − 170

2−0.9506
≈
[
0.9156, 0.9857

]
Second-order approximation plot6:

6See appendix 8.2 for R code.

8



−40

−20

0

0.900 0.925 0.950 0.975 1.000
ψ

lo
g−

lik
el

ih
oo

d
Second Order Taylor approximation to Binomial t = 8, n = 170

Figure 3: Second-order approximation plot

The Bootstrap percentile 95% confidence interval is [0.9102564 0.9820359]7.

For our p-value based on the Likelihood Ratio Test Statistic, the value of test statistic, given that ψ̂0
mle

0 = 154
162 ,

is W ≈ 121.6012 and our p-value was 8:

W = 2ln
(

L(ψ̂0)
L(ψ0

null = 0.3)

)
≈ 121.6012 ∼ χ2

1

P (W ≥ 121.6012) = 2.822294 × 10−28

The empirical p-value generated from a random sample9 was equal to 0, meaning out of the 1500 samples
based on the null hypothesis, there were no samples that had a test statistic as significant or more than the
one we obtained from the data.

5.2 Results from Bayesian Inference
Based on the posterior median value of π10,

P (ψ0 < 0.94855|t) = 0.5
7See appendix 8.3 for R code
8See appendix 8.4 for R code.
9See appendix 8.5 for R code.

10See appendix 8.6 for R code.
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we computed ψmedian0 to be 0.94855, which is our point estimate for ψ0. We computed the Bayesian interval
for π [a,b], which was [2.2319402%, 8.799074%]11, and used it to calculate the interval for ψ0:

P (1 − 2b
1 − b

≤ ψ0 ≤ 1 − 2a
1 − a

)

Using this, we calculated the Bayesian credible interval for ψ0 to be [90.35%, 97.6%]12. We also determined
that the vaccine efficacy rate (ψ0) exceeds the FDA threshold of 30%.

P (ψ0 ≤ 0.3) = P (π ≥ 7
17) = 1.960014e− 28

From this, we can state that the probability of ψ0 being greater than 30% is 1 − p, which is greater than
99%13.

6. Discussion
The p-values for hypothesis testing under both the likelihood estimation and Bayesian framework were
2.822294 × 10−28 and 1.960014 × 10−28 , near-zero values. The empirical p-value was exactly zero, meaning
the probability of getting a set of data as significant or more than the original data set given that the
parameters of the null hypothesis are true is zero, or near-zero. For both approaches, at a significance level of
α = 0.05, we reject the null hypothesis that states that the true value of ψ0 = 0.3 and accept the alternative,
ψ0 ̸= 0.3.

The Wald confidence interval, [0.9156, 0.9857] captures with 95% confidence the true value of ψ0. The
bootstrapped interval is [0.9102564 0.9820359]. Neither the boot-strapped or Wald confidence interval contains
the value 0.3, meaning we can conclude that the true value of ψ0 is likely not 0.3. The Bayesian credible
interval indicates that there is a 95% probability that the true value of ψ0 lies in [0.904, 0.976].

The Pfizer report uses a Bayesian beta-binomial model to determine the 95% credible interval for ψ0 and the
probability of ψ0 surpassing 30%. They utilize a success threshold of 98.5% for P (ψ0 ≥ 30%), as opposed to
hypothesis testing like our analysis did. The Pfizer report does not apply likelihood inference methods like the
ones we chose to use for this paper. However, the results of our likelihood methods are exceptionally similar
to Pfizer’s Bayesian conclusions, which reported by Polack et al., who report that “A two-dose regimen of
BNT162b2 (30 µg per dose, given 21 days apart) was found to be safe and 95% effective against Covid-19”14.
The strengths of using Frequentist methods of analysis, such as maximum likelihood estimation, stems from
the consistency of convergence when dealing with large sample sizes. When dealing with large sample sizes,
like the number of COVID-19 infections in this dataset, maximum likelihood estimates typically offers a high
precision estimate of true values. Possible downfalls of this type of analysis is the assumptions made on the
distribution of our data.

We can conclude that the vaccine would pass the FDA’s requirements and be approved for use.
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S. Senn: “Beta testing”: The Pfizer/BioNTech statistical analysis of their Covid-19 vaccine trial (guest post).
(2021, January 17). errorstatistics.com. March 15, 2025, https://errorstatistics.com/2021/01/17/s-senn-beta-
testing-the-pfizer-biontech-statistical-analysis-of-their-covid-19-vaccine-trial-guest-post/

8. Appendix
8.1) Extended Calculation for π in Terms of ψ0

ψ0 = 1 − 2π
1 − π

ψ0 − π · ψ0 = 1 − 2π
−π · ψ0 + 2π = 1 − ψ0

π = 1 − ψ0

2 − ψ0

π = ψ0 − 1
ψ0 − 2

8.2) Code Second-Order Plot
loglik.binom <- function(psi, x, n){

if (psi >= 1) {
return(NA)

}
pi <- (psi - 1) / (psi - 2)
return(log(choose(n, x)) + x*log(pi) + (n-x)*log(1-pi))

}

ml.binom <- maxLik2(loglik=loglik.binom,
start = 0.3, x = 8, n = 170)

plot(ml.binom) +
labs(x = expression(psi),

title = "Second Order Taylor approximation to Bernulli t = 8, n = 170")

8.3) Code for Bootstrap Interval
set.seed(123)
pi_mle <- 8/170
boot1 <- tibble(

psi_mle = replicate(1000, expr = {
samples <- rbinom(1, 170, pi_mle)
est_psi <- (170-2*samples)/(170-samples)
return(est_psi)

})
)

boot1 %>% summarise(lower = quantile(psi_mle, 0.025),
upper = quantile(psi_mle, 0.975))

8.4) Code for Calculating the Likelihood ratio P-Value
# likelihood function values
psi_mle <- 154/162
psi_null <- 0.3
pi1 <- (psi_mle-1)/(psi_mle-2)
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pi2 <- (psi_null-1)/(psi_null-2)
w <- 2 * log(dbinom(8, 170, pi1)/dbinom(8, 170, pi2))

lr_p_value <- pchisq(w, df = 1, lower.tail = FALSE ) # output = 2.822294e-28

8.5) Code for Generating the Empirical P-Value
# Here is the log.lik of the binomial based on psi for reference
loglik.binom <- function(psi, x, n){

if (psi >= 1) {
return(NA)

}
pi <- (psi - 1) / (psi - 2)
return(log(choose(n, x)) + x*log(pi) + (n-x)*log(1-pi))

}

# set seed for reproducibility
set.seed(101)
w_vec <- c()
B <- 1500
psi_null <- 0.3
pi <- (psi_null-1)/(psi_null-2)

for(i in 1:B) {
sample <- rbinom(1, size = 170, prob = pi)
w_vec[i] <- (2 * loglik.binom(psi_mle, x = sample, n = 170)) -

(2 * loglik.binom(0.3, x = sample, n = 170))
}

# emp p-value
emp_p_value <- mean(w_vec >= w) # output = 0

8.6) Code for Generating Prior and Posterior Distributions of π
library(ggplot2)

ggplot() + geom_function(fun = dbeta,
mapping = aes(color = "prior"),
args = list(shape1 = 0.700102, shape2 = 1),
xlim = c(0,0.3)) +

geom_function(fun = dbeta,
mapping = aes(color = "posterior"),
args = list(shape1 = 8.700102, shape2 = 163),
xlim = c(0,0.3) ) +

scale_color_manual(name = "dist", values = c("blue", "red")) +
labs(title = "Binomial w/ Beta prior",

subtitle = "Based on placebo + vaccine data",
x = expression(pi), y = "PDF")

8.7) Code for Calculating Posterior Median of π
alpha_posterior <- 8.700102
beta_posterior <- 163
posterior_median <- qbeta(0.5, alpha_posterior, beta_posterior)

8.8) Code for Calculating Interval Estimate for π

12



int <- qbeta(c(0.025,0.975), shape1 = 8.700102, shape2 = 163)

8.9) Code for Calculating Interval Estimate for ψ0

upper <- (1 - 2*int[1])/(1-int[1])
lower <- (1 - 2*int[2])/(1-int[2])

8.10) Code for Bayesian p-value
alpha_prior <- 0.700102
beta_prior <- 1

X_v <- 8
X_p <- 162

alpha_posterior <- alpha_prior + X_v
beta_posterior <- beta_prior + X_p

psi_threshold <- 0.30
pi_threshold <- (1 - psi_threshold) / (2 - psi_threshold)

p_value_psi <- pbeta(pi_threshold, alpha_posterior, beta_posterior, lower.tail = F)

print(p_value_psi)

p_val_comp <- 1 - p_value_psi
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